Компоновочная схема и устойчивость СА



Компоновочная схема и устойчивость САУстойчивость — важнейшее свойство, которым должен обладать СА во время всех эволюций при посадке на планету.

Проблема обеспечения устойчивости, как известно, общая проблема для всех движущихся объектов, в каждом конкретном случае решаемая, однако, по-разному. И в данном случае, применительно к СА, она также имеет свою специфику.

Дело в том, что жидкое топливо, питающее ракетный двигатель во время его работы, колеблется (в силу наличия случайных возмущений) . Воздействуя на корпус СА, эти колебания порождают колебания СА в целом.

Чувствительные элементы (гироскопы) реагируют на колебания корпуса и включают, в свою очередь соответствующие исполнительные органы (рули) , тем самым формируя замкнутую колебательную систему спускаемый аппарат — автомат стабилизации (СА — АС) .

При определенных условиях, в значительной степени за висящих от «совершенства» компоновки СА, могут возникнуть нарастающие колебания корпуса СА, приводящие в конечном счете к его разрушению.
Характерным здесь является то, что корни неустойчивости лежат именно в особенностях компоновочной схемы СА, что влечет за собой необходимость самого тщательного исследования этих особенностей.

Использование жидкостного ракетного двигателя для обеспечения мягкой посадки СА порождает, как видно, ряд проблем, связанных с обеспечением его устойчивости.
Займемся одной из них, а именно — исследованием роли конструктивных параметров компоновочной схемы СА в формировании динамических свойств СА как управляемой системы.

Управление СА относительно центра масс в плоскостях тангажа и рыскания осуществляется специальным автоматом стабилизации путем создания управляющих моментов при целенаправленном включении управляющих двигателей. Возможны и другие схемы управления, например, путем перераспределения тяг управляющих двигателей или отклонения маршевого двигателя (газового руля) .

Что касается топливных баков, то они обычно выполняются в виде тонкостенных оболочек различной геометрической конфигурации (обычно осесимметричной) и размещены внутри СА.

Какими параметрами желательно характеризовать ту или иную компоновочную схему с тем, чтобы формализовать дальнейший анализ? С точки зрения динамики представляют интерес те, которые в первую очередь характеризуют: форму и расположение топливных баков; положение центра масс СА; положение и тип управляющих органов; соотношение плотностей компонентов топлива; «удлинение» (т.е. отношение высоты к диаметру) СА.

Будем предполагать, что траектория посадки СА выбрана (и является оптимальной в том или ином смысле) . Есть также (или формируется в процессе полета) программа работы маршевого двигателя. Все это однозначно определяет упомянутые выше параметры компоновочной схемы СА в каждый момент времени активного участка.

Этих предположений достаточно для формализации обсуждаемой проблемы — исследования влияния особенностей компоновки СА на его устойчивость.

Однако задача стабилизации СА при посадке на планеты, лишенные атмосферы, включающая в себя анализ динамики объекта, исследование причины неустойчивости и методов ее устранения, не допускает полной формализации и требует привлечения диалоговой технологии исследования.

Для построения такой технологии необходимо начать с анализа основных факторов, определяющих в конечном счете структуру диалога «человек ЭВМ», а именно: особенностей СА как механической системы; особенностей его математичек моделей; своеобразия методов исследования этих моделей.
Спускаемый аппарат как механическая система представляет собой тонкостенную (частично ферменную) конструкцию, снабженную тормозным устройством жидкостным ракетным двигателем — и необходимой системой стабилизации.

Важной особенностью компоновочной схемы СА является наличие в конструкции топливных отсеков (с горючим и окислителем) различной геометрической конфигурации.

Стабилизация СА относительно центра масс осуществляется специальным автоматом стабилизации путем создания управляющих моментов за счет отклонения управляющих двигателей, маршевого двигателя или газовых рулей.
В процессе движения СА жидкость в отсеках колеблется, корпус аппарата испытывает упругие деформации, все это порождает колебания объекта в целом.

Чувствительные элементы (гироскопы) и исполнительные элементы (рули) замыкают колебательную систему спускаемый аппарат — автомат стабилизации и рождают весь комплекс вопросов, связанный с обеспечением устойчивости системы в целом.

Движение СА мы представляем себе как «возмущенное» движение, наложенное на программную траекторию. Термин «устойчивость» относится именно к этому возмущенному движению.



Уместно заметить, что выбор модели представляет собой хороший пример неформализуемой процедуры: без участия разработчика он в принципе невозможен.

Какими соображениями руководствуется инженер при выборе моделей?

Прежде всего ясно, что не имеет смысла перегружать расчетную модель различными подробностями, делая ее неоправданно сложной. Поэтому представляются разумными следующие соображения.

Для анализа запасов статистической устойчивости объекта можно ограничиться моделью твердого жесткого тела.

При выборе же характеристик устройств, ограничивающих подвижность жидкости в отсеках, необходимо уже учитывать волновые движения на свободной поверхности жидкости как источник возмущающих моментов.

Выбор рационального размещения датчиков системы стабилизации объекта приходится делать с учетом упругости.

Некоторые методы, используемые при анализе процессов стабилизации, связаны с анализом динамических свойств объекта в некоторый фиксированный момент времени. Для получения интегральных характеристик объекта в течение небольшого интервала времени или на всем исследуемом участке используются геометрические методы, связанные с построением в пространстве областей устойчивости, стабилизируемости специальным образом выбранных параметров (как безразмерных, так и размерных) . Эти методы также позволяют дать ответ на вопрос, насколько велик запас устойчивости или стабилизируемости, и помогают выяснить причины возникновения неустойчивости.

Существует еще группа методов обеспечения устойчивости СА, включающая в себя:

1) рациональный выбор структуры и параметров автомата стабилизации;

2) демпфирование колебаний жидкости в отсеках с помощью установки специальных устройств;

3) рациональный выбор компоновочной схемы объекта (перекомпоновка) , с одновременной настройкой параметров АС или с принципиальным изменением его структуры.

Обратимся теперь собственно к термину «технология решения» проблемы. Под этим термином мы будем понимать набор комплексов отдельных подзадач, на которые разбивается обсуждаемая задача, математических методов и соответствующих технических средств для их реализации, процедур, регламентирующих порядок использования этих средств и обеспечивающих решение задачи в целом.

Конечной целью проектных разработок по динамике СА является обеспечение его устойчивости на участке посадки.

Этой задаче подчинены все другие, в том числе и задача анализа структурных свойств СА как объекта регулирования (по управляемости, наблюдаемости, стабилизируемости) .

Так как устойчивость — это то, что в конечном счете интересует разработчиков (и заказчиков) , то с этой задачи (в плане предварительной оценки) приходится начинать в процессе исследования, ею же приходится и завершать все разработки при окончательной доводке параметров системы стабилизации. При этом меняется лишь глубина проработки этого вопроса: на первом этапе используются сравнительно грубые модели как объекта регулирования, так и регулятора. На конечном этапе, после того как проведен комплекс исследований, проводится детальный анализ устойчивости и качества процессов регулирования объекта.

Итак, следует руководствоваться следующим принципом: занимаясь анализом динамики объекта, начав с оценки устойчивости, время от времени надо возвращаться к ней, проверяя все идеи и рекомендации, полученные в процессе анализа на замкнутой системе объект регулятор, используя (по обстановке) грубые или уточненные модели как объекта, так и регулятора.

Этот принцип и лежит в основе комплекса процедур, регламентирующих порядок использования моделей СА, методов анализа этих моделей, обеспечивающих решение задачи устойчивости СА в целом.

Связанные записи

Метки: , , , , , , , , , , , , , ,

Оставить комментарий