Свободный полет в полях тяготения



Свободный полет в полях тяготенияВажнейшей из природных сил, действующих на космический аппарат, является сила всемирного тяготения. Силы тяготения (или силы притяжения) подчиняются ньютоновскому закону всемирного тяготения. Этот закон говорит: всякие две материальные точки притягиваются друг к другу с силами, прямо пропорциональными квадрату расстояния между ними, или, в математической форме: f*m1*m2 (1) F=``r^2 Здесь F -величина обеих сил притяжения, m1, m2 — массы притягивающихся материальных точек, r — расстояние между ними, f — коэфициент пропорциональности, называемой постоянной тяготения (гравитационная постоянная) . Если измерять массу в килограммах, силу ньютонах, а расстояние в метрах, то, как показывают точные измерения, постоянная тяготения равна 6,672*10^(-11) м^3/(кг*с^2) На различных этапах космического полёта различное значение может иметь воздействие среды, в которой происходит движение. Силы, действующие со стороны атмосферы на космический аппарат, называются аэродинамическими. В межпланетном пространстве важную роль может играть давление солнечного излучения, которое совершенно незаметно в повседневной жизни. Если масса космического аппарата невелика, а поверхность, на которую давят солнечные лучи, значительна, то действием этого фактора можно пренебречь.

Задача N тел и метод численного интегрирования

Пассивное движение космического аппарата в мировом пр-ве происходит в основном под действием сил притяжений небесных тел — Земли, Луны, Солнца, планет. Положение этих тел непрерывно изменяется, причем их движение, как и движение космического аппарата, происходит под действием сил всемирного тяготения. Таким образом, мы сталкиваемся с необходимостью решения задачи о движении большого числа небесных тел (в том числе искусственного небесного тела — космического аппарата) под действием сил взаимного притяжения. Такая задача носит название “задача N тел” .

Решение этой задачи в общем случае встречает громадные трудности, даже задача трех тел решена лишь для нескольких частных случаев. Но в космодинамике задача N тел имеет особый характер. Космический аппарат не оказывает практически никакого влияния на движение небесных тел. Такой случай известен в небесной механике как ограниченная задача N тел. При её решении движение Солнца, Земли, Луны и планет является заданным, так как оно прекрасно изучено астрономами и предсказывается ими на много лет вперед.

Расстояния от космического аппарата до Солнца, Земли, Луы и планеты в любой момент известны, массы всех этих тел также известны, а значит, известны по величине и направлению и ускорения, сообщаемые небесными телами космическому аппарату. В самом деле, если масса небесного тела M, а масса космического аппарата m, то гравитационное ускорение a, сообщаемое аппарату, равно силе притяжения f*M (2) ``r^2` Таким образом, гравитационное ускорение зависит только от расстояния между притягивающимися телами и от массы притягивающего тела, но не зависит от массы притягиваемого тела.

Итак, по формуле (2) мы можем вычислить гравитационное ускорение, сообщаемое космическому аппарату каждым небесным телом в отдельности, а значит, можем вычислить и суммарное ускорение. Зная величину и направление начальной скорости космического аппарата, можно, учитывая вычисленное ускорение рассчитать положение и скорость аппарата через небольшой промежуток времени, например через секунду. Для нового момента нужно будет заново вычислить ускорение и затем рассчитать следующее положение аппарата и его скорость и т.д. Таким путем можно проследить все движение космического аппарата. Единственная неточность этого метода заключается в том что приходиться в течение каждого небольшого промежутка времени (шага расчета) считать ускорение при вычислениях неизменным, в то время как оно переменно. Но точность расчета можно как угодно повысить, уменьшив шаг.

Описанная процедура называется численным интегрированием.

Невесомость

При невесомости притяжение Земли (или другого небесного тела) не будут вмешиваться в перемещения предметов относительно корабля. Отсутствуют какие-либо внешние поверхностные силы, действующие на корабль. Наличие же внешних поверхностных сил (сила сопр. среды, силы реакции опоры или подвеса) — обязательное условие сущ. состояния весомости.



Итак, тело, свободно и поступательно движущ. под влиянием одних сил тяготения, всегда нах. в состоянии невесомости. Примеры: корабль в мировом пр-ве, падающий лифт, человек совершающий прыжок.

Теперь, когда мы выяснили природу невесомости, уместно будет внести нек. поправки. Мы всегда имели ввиду, что гравитационное ускорение отд. деталей почти (но не в точности) одинаково, т.к. расстояние отд. деталей от притягивающего тела (напр. Земли) примерно одинаковы. Фактически все эти неточности ничтожны. Перепад гравитационных ускорений (градиент гравитации) в области пространства, занятой косм. кораблем, ничтожен. Например на высоте 230 км над пов. Земли, земное гравит. ускорение уменьшается на 2,77*10^(-6) м/c^2 на каждый метр высоты. Когда космический корабль длиной 5 м располаг. вдоль линии, напр. на центр Земли его нижний конец получает ускорение на 0,00015 % больше, чем верхний.

Таким образом, нарушения невесомости, вызванные наличием градиента гравитации (т.е. по существу неоднородностью поля тяготения) , приводят не к “частичной невесомости” , а к совершенно особому состоянию. В состоянии свободного полёта в поле тяготения тела несколько (весьма и весьма слабо) растянуты в радиальном направлении.

Центральное поле тяготения

Когда космический аппарат находиться в мировом пространстве вдали от планет, достаточно учитывать притяжение одного лишь Солнца, потому что гравитационные ускорения, сообщаемые планетами (вследствие больших расстояний и относительно малости их масс) , ничтожно малы по сравнению с ускорением, сообщаемым Солнцем.

Допустим теперь, что мы изучаем движение космического объекта вблизи Земли. Ускорение, сообщаемое этому объекту Солнцем, довольно заметно: оно примерно равно ускорению, сообщаемому Солнцем Земле (около 0,6 см/с^2) ; естественно было бы его учитывать, если нас интересует движение объекта относительно Солнца. Но если нас интересует движение космического объекта относительно Земли, то притяжение Солнца оказывается сравнительно малосущественным. Оно не будет вмешиваться в это движение аналогично тому, как притяжение Земли не вмешивается в относительное движение предметов на борту корабля-спутника. То же касается и притяжения Луны, не говоря о притяжениях планет.

Будем считать небесное тело однородным материальным шаром, состоящим из вложенных друг в друга однородных сферических слоев. Итак, небесное тело притягивает так, будто бы его масса сосредоточена в его центре. Такое поле тяготения наз. центральным. Будем изучать движение в центральном поле тяготения космического аппарата, получившего в начальный момент, когда он находился на расстоянии r от небесного тела скорость v. Для дальнейшего воспользуемся законом сохранения мех. энергии, который справедлив для рассматриваемого случая, так как поле тяготения является потенциальным, наличием же негравитационных сил мы пренебрегаем. Кинетическая энергия космического аппарата равна (mV^2) /2, где m — масса аппарата, а v — его скорость. Потенциальная энергия в центральном поле тяготения выражается формулой f*M*m П=¾¾¾¾¾, r где М — масса притягивающего небесного тела, а r — расстояние от него до космического аппарата, потенциальная энергия, будучи отрицательной, увеличивается с удалением от Земли, обращаясь в нуль на бесконечности. Тогда закон сохранения полной механической энергии запишется в следующем виде:  Здесь в левой части равенства стоит сумма кинетической и потенциальной энергий в начальный момент, а в правой — в любой другой момент. Сократив на m и преобразовав, мы напишем интеграл энергии — важную формулу, выражающую скорость v космического аппарата на любом расстоянии r от центра притяжения: или где K=f*M — величина, характеризующая поле тяготения конкретного небесного тела (гравитационный параметр) . Для Земли K=3,986005*10^5 км^3/c^2 для Солнца K=1,32712438*10^11 км^3/c^2.

Связанные записи

Метки: , , , , , , , , , ,

Оставить комментарий